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Chris Wootton, a talented Nuclear Engineering student at UC Berkeley,
was tragically killed just before graduation on May 3, 2008

Chris 1s missed by our group as both a friend and rapidly developing
colleague. His contributions to this study in solenoid steering are duly
noted.
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“Good” transport of a single component, unbunched beam with intense
space-charge and a reasonably smooth 1nitial distribution requires:
Lowest Order:
1. Stable single-particle centroid controlled/steered to near-axis
Cover in Part II
Next Order:

2. Stable rms envelope in moment models
Higher Order:

3. “Stable” higher-order Vlasov description without
large emittance growth and particle losses

Need to understand how these constraints restrict possible parameters to
design intense beam machines in a solenoidal transport lattice
* Contrast 2 and 3 to quadrupole focusing
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Examine points 1n operating parameters that can lead to problems ....
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Instability bands of the KV envelope equation are well understood in

periodic focusing channels and must be avoided in machine operation

Envelope Mode Instability Growth Rates
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For solenoids, envelope instabilities strongly dependent on occupancy and
become weaker as the solenoids fill the lattice
High occupancy solenoids used with space-charge strong

* Envelope modes weaker for solenoidal transport
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Recent theory (simulations and reduced core-particle models) show that

quadrupole transport 1s limited by strong halo processes
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What about analogous processes for solenoidal transport?

Does an analog of the Tiefenback current limit exist?

Matched envelope flutter 1s driving mechanism and 1s much smaller for

high occupancy solenoids mitigating such processes
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Part II: Centroid Ocillations and Steering in Solenoidal Transport

Good News:

Space-charge related beam stability 1ssues look relatively benign
for solenoids relative to quadrupole transport

Question:

What about maintaining centroid control to enable precise focusing on
small targets and to mitigate non-ideal effects in transport?

Historically this has been a problem for solenoids. Can theory help?
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Solenoid Transport Lattice in the
Neutralized Drift Compression Experiment (NDCX):

Solenoids 2—Plane Solenoids Centroid

Steering Dipoles Diagnostics

A\
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| R

Typical beam centroid measured (apetured beam): S=S§,

<£E'>J_ =-5.81 mm <y>J_ =-2.77 mm

(') | =224mrad  (y')) =337 mrad

Desirable to correct centroid for improved transport and target experiments
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Typical centroid orbit in lattice:

* Exhibits x-y coupling with Larmor rotation
*Driving terms present from solenoid mechanical misalignments

X [cm]

Need to steer orbit back to axis using tixed orientation dipole steering
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Magnetic Field of “Ideal” Solenoid

Ideal Solenoid Field:
. 1 aBzo(Z)
B (x) = 2 9z
B 1 aBzo(Z)
By(x) = 2 9z Y
BZ(X) — Bzo(Z)

NDCX Solenoid Parameters:
Length = 433.1 cm

Radius = 50.8 cm

Bmax < 3 Tesla
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Solenoid fringe function

Linearly Superimpose Solenoids: 7 = solenoid index

N $; = center jth solenoid
B, (8) — Z stst (3 _ Sj) st (8) — solenoid Fringe Function

j=1 Fs;(0) =1 norm
st — Peak Field
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Take an 1deal solenoid and then displace the center and tilt
about the axis of symmetry to model misalignments

Solenoid Coil

YA

Center Displacement: A = A, X+ Ay + A,z

Transverse tilts about ©, = sin ¢ cosf ~ ¢ cos b
Displaced center: @y = sinsinf ~ ¢sin b
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Leading order magnetic field of misaligned solenoid

Displacement and rotational misalignments:

Center Displacements: Rotations (Tilts) of Centerline:
AZC? Ay’ AZ @m,@fy
|ACU|’ |Ay‘ ‘AZ| <1 @xa@y <1
R R 14
Produce bending dipole terms to leading, linear optic order:
Ideal Misaligned
T ‘
1 (9BZ0(Z) | 1 aBzo(Z)
T3 Tt 37, BetOult Ba2)®
10B.o(2) = 10B.(2)
_ 4t z0 + z0
By = T2 s ¥y T3 92 [Ay + Oyz] + B.o(2)0y
. 9Bu(2)
| 0lZ
BZ — BZ AZ ‘
- o) 0 T \
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Magnetic field of steering dipoles

Model as 1deal uniform bending fields with axial fringe

B, =
B, (X) _ B.F, (z) const

F.,.(z) = Fringe Function
By(x) = By Fy(z2) (2) I (%) _q

* Misalignment and nonlinear effects neglected since correction is small

In NDCX crossed field dipole correctors are employed
3D Geometry 2D Geometry (y-field = x-bend)
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Transverse Centroid Equations of Motion: Basic Model

Notation:
r=(x) = (y)1
=) Yy =)L
=4
ds
(Bp| = MYWOE _ Rigidity
q
Equations of Motion:
b B,
= Y y/
Bp]  [Bpl
y// _ by - b, 7'
Bpl  |Bp)
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Transverse Centroid Equations of Motion: fully expressed
Use complex coordinates:

é:CL’—F“Ly g’:x’{-iy’ 1 =v—1
and linearly superimpose solenoid (with errors) and steering fields:
N N
~ B ~ By,
g//_I_,l: 3.7 F zl_l_z S] FS/ z =
jzl [Bp] 32_:1 2[Bp] ™
N
s B.. B..
S _FA 'O (s — R0,
2 TP S )+ e,
N Ny
~ B, By
+1 N - YE
; [Bp]” ™ jz_:l [Bp] ™
Complex transverse éj = Aa:'j + ’iij Center Displacement

misalignments of jth solenoid

@j = @iL‘j -+ i@yj

Centerline Rotation

* No dependence to linear order on z-displacement A, ;
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How to solve this mess!

Step 1: Transform particle phase-space to a local rotating “Larmor” frame

to remove x-y coupling in the absence of alignment errors and steering
* Quantities with “~” refer to Larmor frame
/ ds Fs;(5 — s;)
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Step 2: Exploit an analogy to the dispersion function for analysis of

“off”” momentum in single particle orbit
Fractional

5_

) "~ Momentum Error

z"(s) + k(s)x(s) = RGS)

__Radius of
Dipole Bend in Latice

R(s)

Expand: = = Tp + Ty

1) homogeneous solution:

D,/(S ) + k(s)D(s) = —8) Usual Dispersion Function
3 ~ Property of Lattice Only
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Obtain Expanded Centroid Solution

Total Solution = Homogeneous Solution (1deal, aligned response)
+ Particular Solutions (misalignment + steering response)

5(s) = 2(s;)C(s]s;) + 2 (5:)S(s|s;)Solution without alignment
*********** errors from initial condition

4 Z[AJQJ (s) +© R ()] ~ Solenoid alignment

\- I - error terms
g=1 |
éj = Agj +1Ay; Complex transverse
o ;= O,; +1i0,,  misalignments of jth solenoid
- T T e e e e = .
N, N,
N B By, ~ »
D._.(s) + Z YLD (8) Steeri
T - Steering terms
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Homogeneous Solution: Cosine and Sine-like Functions

Cosine and Sine-like functions are real-valued and obey the Larmor-
frame Hill's Equation:

é"(s\si) + i%’:(s)é’(3|sz) = ()

S*”(3|3i) + R(S)S(S|SZ) =0

— N =4 2
- 1 ~ By; Focusing strength
k(s) = - Foi(s—s; & SHEHE
(5) 4 ; [Bp] ™ ( i) in the Larmor frame

Satisfying the “cosine-" and “sine-like” initial conditions:
CNY(SZ‘SZ) — 1 S(SZ‘SZ) =0
él(Si‘Si) =0 S/(Si|8i) =1

Gives the Larmor-frame orbit from initial conditions in the 1deal system

* x-y plane decoupled with usual Courant-Snyder invariants etc.
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Centroid Orbit for an Aligned Lattice
Lab Frame Centroid Orbit

0.0050 ;
0.0025 ¢
0.0000 ¢
-0.0025
» —0.0050:
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—0.0100:

(m)

-0.0125

0.0

Larmor Frame Centroid Orbit

0.020;

Shown for “plausible’ initial conditions

of centroid emerging from injector:

Ly Yq
/ /
;) Y,

QU

1 mm

1 mrad

Larmor transformation simplifies expression of centroid oscillations
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Particular Solution: complex-valued Alignment Functions

Driven Hill's equations solved with homogeneous initial conditions:
Displacement Function:

~ // - = Z BSJ / _,“J; ~ ~
Bt B =gy Dle) =0=Di(sn)
LHS: Hill's Equation RHS: Driving dipole terms
generated by misalignment

Rotation Function

~ 1/ o~ ?’BSJ / _.1; B L~

Gives change in Larmor-frame orbit due to mechanical misalignments
* Dipole terms driven by misalignments have amplitudes scaled out
* D;, R, functions of the ideal, aligned lattice
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Centroid Orbit for a Misaligned Lattice

L.armor Frame Centroid Orbits

| Misalignments
| of solenoids cause

" deviations from
ideal positioning.

Shown for a set of solenoid randomly set

misalignments with:
Aa:j; ij ~ 1 mm

Oy;,0,; ~ 1 mrad
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Particular Solution: Bending Functions

Driven Hill's equations solved with homogeneous initial conditions:

~ I/ , i
B+ KJB = iFpe 7,

~ 1/ T

B —|— H,B — —ije m/)’

- .
LHS: Hill's Equation RHS: Driving terms
generated by steering dipoles

~ ~ /

~ ~ /

Byg( ) =0 :Byj(s’b)

Gives change 1n Larmor-frame orbit due to steering dipoles
* Steering dipole terms have amplitudes scaled out

v B,;, B,; functions of the ideal, aligned lattice
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Application: Statistical Analysis of Misalignments

* Use orbit expansion derived to efficiently calculate statistical properties
of an ensemble of errors. Show example with:

-- 10,000 independent error sets
-- Uniformly distributed up to cutoff amplitudes
-- x- and y-planes same up to statistical errors: show only x-plane

* Misalignments can come in 2 flavors:

Error of 1nitial centroid out of gun:
coordinate and angles take:
lz;] <2mm  |2;| < 5 mrad
Alignment of individual solenoids:

transverse displacements and rotations:

Az yl <3mm O, ,] <10 mrad
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rms centroid coordinate

Solenoid Axial Extents

=

7] <2mm  |A, | <3 mm

|z;| < 5mrad |0, ,| < 10 mrad

0 I s \ A i
8 | 1 &
| ITOTIS:
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E 6} ] Al
2 I 1< Sol: Disp+Rot
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rms centroid angle

2] <2mm A, ,| <3 mm

|z;| < 5mrad |0, ,| < 10 mrad

25 - - r - T T T r T
: n 1 Errors:
201 \
= | 1Al
= 15} 3= Sol: Disp+Rot
£ i<—-Sol: Rotations
. 10 , - :
= :
;_4 I N .
5L - ]
: ’ t« Initial Conds
O | = 1 1 | 1 1 1 1 | 1 1 1 1 l 1 1 1 1 1 1 1 1 1 1 |-
0.0 0.5 1.0 1.5 2.0 2.5
s [m]
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rms centroid coordinate + orbit bundle

Azl <3 mm

| <5mrad |0, ,| <10 mrad

|z;| < 2 mm

Bundle of 75 orbits in ensemble

/
1

[

31
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Application: Optimal Beam Steering

Many specific steering systems possible that theory can be applied
* Assume (as in NDCX) two crossed field dipoles used to steer

Matrix of Bending Functions at Bend Field
measurement location [B] Strengths B
Re éi?slm Re :@;Am_ Re :@;I;zm_ Re @},2@ - B, |
RelB,1,,| RelByi,,] RelB.on] RelB,s,,) By
Im_gi;ﬂm Im -@}llm- Im 'gf’ﬂm' Im_@yZm_ Bao
| m[Byy,,] Im(Byy,] ImBroy] Im[By,,] | L Bez
- - RelZ, — Z,. Target minus
Byim = Byi(sm) — —[By] Re ZQ - Z{m measured
= x-plane Im %ﬁ o %m: centroid coordinates
bending function | ImiZy — 2] (Larmor transformed)
AZ

at measurement s = s,

B]- B = —[Bp|AZ
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Solve for steering fields as:

B =—[Bp][B] ™" - AZ

* 5x times less work (1 vs 5 full phase-space measurements needed) than
“pure” experimental method of accumulating a deviation Jacobian
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Jacobian-based pure experimental correction procedure can be applied

Two crossed dipole example:

r = (x)| etc.

- Ox dx dx ox ] _ _ 0 _ _
01, 0ls 013, o013 6[ Xz
Sz’ 6az}g Sz’ 5.:1:}/ 2 /
5[293 5I2y (51333 513y 5I2y — L
Sy Sy Sy oy i d
5]27; 5[2}, 613/3: 5I3}y 3z /
oy oy oy oy 013y T Y 1o
i 5123; (SIQy 51333 5I3y _ B B ) )
Response Matrix [D] Deviation. ~ ords: Target value -
b Currents 0/ Nominal value
0ol = —[D]_l . .Cl?o fO
Advantages:

* Takes into account all effects (caution: even with wrong interpretation)
Disadvantages:
* Min 5x (6x to verify) measures of full centroid phase space needed

- More if nonlinear: iterate corrections to reduce amplitudes

* Must repeat every time machine operating point is changed
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Application: Calculation of lattice misalignment parameters
Measure enough operating points to constrain all misalignment parameters

and use theory to relate to optical response:

Z=A-D

Centroid measurement data of k operating points of lattice: (2k)
P

[t N2

rincipal orbit and alignment functions evaluated at the measurement plane for the
k operating points: (2k) x (2Ns + 2)
Q — Unknown initial centroid and solenoid misalignment parameters: (2Ns +2)

(5 )
~ .1 - 1 .1 -1 -1 ~1 i
) R

1

~1 1 2
51 ( Cm Sm m QZm QNSm Elm EZm ENSm -t
/—;711 \ 1 a1 &L ~ 1 ~ /1 ~ 11 ~ 11 ~ él
Zm Om Sm le Q%m Qé\fsm E%m E%m ENsm AQ
-2 2 @2 T ) ) > > > =
§n22 Cm Sm 2m 222771 Q]gs m E12m E22m ENS m
~/ ~ ~ ~/ ~ ~ ~/ ~/ ~
Z o 12 12
—m — Cm Sm Im QQm QNSm Elm ZYm ENSm A
) . : =N,
k e ax Ak =k ~ & -k o~k ~ k 0
N B ey (s S OB (- O B
“m ik Sk ~ / ~ | ~ / ~/ ~/ ~ / :
K m Sm le QZm QNSm Elm EZm ENSm ‘
\ &y, /
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Solve using over-constrained data sets using SVD methods:
* Answer 1s then best fit in a least-square sense to data

—1

D=A -Z

Comments:
* Determining actual misalignments 1s a first and enables:
- Mechanical correction of misalignments
- Incorporation of specific misalignments in detailed simulations
* More variables will generally result in worse fit
- Use pencil beam and turn off solenoids, if possible
* Errors must be studied for high confidence inversion
- Numerical tests indicate +- 0.5 mm 1n x,y and +- 1 mrad in x’y’
measurement tolerances allows determination of 2-4 solenoids
with initial conditions
* Attempts at calculating errors with lab measurements have failed

to date and suggest some 1inconsistency in measurement of theory
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Conclusion: Centroid oscillations and steering in solenoidal transport
A new formulation has been derived to efficiently analyze the linear
evolution of the beam centroid
* Larmor frame analysis using an expansion in complex-valued functions that
depend only on 1deal lattice properties

* Analogous to “Dispersion Function” treatments of momentum spread
- Functions for each element and more complicated formulation because each
element can have different mechanical misalignments

This formulation can be exploited to:
* Efficiently analyze statistical properties of alignment errors to set tolerances
* Optimally steer the beam
* Calculate actual misalignments of lattice from centroid measurements

Applications to the NDCX solenoid transport lattice underway:
* Statistical predictions appear consistent with measurements
* Steering and alignment error inversion are still underway

- Agreement is improving with measurement refinements
- Still not good enough at present but promising: Hard to measure mrad angles!
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Field data measured from 4 solenoids of the NDCX lattice and fit to the thin-coil

model using nonlinear regression:

].2 T 1 T T T T T T T T T T T T

1.0k

08 -

04

02h

~ 800 data points

0.0 = .
Solenoid Geometry:
Length Coil =43.31 cm
Radius Coil (inner) = 5.08 cm
Radius Coil (outer) = 6.60 cm

Bzo(Z) 1

Fs(2)

z [eml

Best Thin-Coil Fit Results:
¢ Length Coil =43.685 cm
R Radius Coil (inner) = 6.031 cm

(/2 — z (/2 + z

CX_

Bmax < 3 Tesla
( V(

B.o(0) 2
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Larmor Frame Transformation: Decouples 1deal betatron oscillations

VoI

Use complex coordinates:
: / / ./ '
Z=x 1Ty Z'=ax +y 1
Transform particle phase-space to a local rotating “Larmor” frame
* Quantities with “~” refer to Larmor frame

~ — i) N,
~ — &€ 1 i
5 - :——Z f ds Fs;(s — sj)
~ / N, — 1) 2
(¢ -abs)e =
(typical operating point)
0 — . . LArmor Rotation Angle =
y A |
H‘%’ _
—~ =50
5
2100
N i = i
Y > i
—150;
~ ) -
VA T - e e T
200TTTes 0 15 200 25
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rms centroid angle + orbit bundle

Bundle of 75 orbits in ensemble lzi| <2mm |A, y| < 3 mm

|z;| < 5mrad |0, ,| < 10 mrad

<7-|-I'IIIS

i< - 1ms
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